Rockland County Green Infrastructure

Sarah LeClerc, Travis Lacey, Brendan Wilton, Taylor Carden

Mission Statement

In order for Rockland County's sources of potable water to remain sustainable to support population growth and economic recovery, the aquifers must be replenished. Potential solutions in the form of green infrastructure will be compared based on criteria as defined by an appointed task force. Implementing green infrastructure will increase infiltration and aims to increase the available potable water for Rockland County as it continues to grow and flourish.

Background

- 199 sq mi, southernmost county west of the Hudson
- Population growth
- Potential water supply shortage if unsustainable withdrawals
- Green Infrastructure

 Balances supply and demand

 Large availability of
 - impervious areas

Images: <u>http://www.epodunk.com/cgi-bin/genInfo.php?locIndex=22499</u> http://www.upstatenyroads.com/counties/rockland.shtml

Project Schedule and Milestones

Fall 2015		
Date	Objective	
September 29th, 2015	Quantify relative infiltration potential of various GI technologies	
October 6th, 2015	Identify various Rockland County site and soil conditions	
October 6th, 2015	Use EPA Stormwater Calculator	
October 20th, 2015	Proposal Presentation*	
October 22nd, 2015	Initial task force meeting	
October 27th, 2015	Mission Statement and submit written proposal*	
November 3rd, 2015	Design alternatives quantifying infiltration potential	
November 17th, 2015	75% Proposal Presentation	
November 19th, 2015	Task force meeting	
December 8th, 2015	Final Proposal Presentation	

Project Schedule and Milestones

Spring 2016			
Date	Objective		
February 1st, 2016	Public Presentation to Rockland County		
February 8th, 2016	Literature Review		
February 8th, 2016	Specific site selection with task force		
February 23rd, 2016	GIS Data Analysis		
February 23rd, 2016	Maintenance Manual		
February 29th, 2016	Overview of permitting requirements		
March 15th, 2016	Conceptual level site design		
March 29th, 2016	Economic analysis performed		
April 18th, 2016	Posters Due		
April 27th, 2016	Senior Design Day		
May 3rd, 2016	Final written report		

Applicable Codes/Regulations

- Municipal Separate Storm Sewer System (MS4)
 - Permit for stormwater discharge in urban areas
- State Pollutant Discharge Elimination System (SPDES)
 - General permit for stormwater discharge from construction activity
 - Required to develop and implement a Stormwater
 Pollution Prevention Plan
- NY State Stormwater Management Design Manual
 - Contains guidelines on the construction of GI technologies

https://gedeongrc.com/decenvironment-awards/

Design Alternatives

- Rain Garden
 - Depressed area filled with vegetation to allow stormwater to infiltrate slowly
- Infiltration basin
 - Area of highly permeable soils that temporary store water until it can infiltrate
- Permeable pavement
 - Materials that allow water to flow through it rather than turning into runoff

Images: <u>http://www.ecolandscaping.org/03/rain-gardens/native-plant-selection-for-biofilters-and-rain-gardens/</u>

http://www.southwesturbanhydrology.com/solutions/bio-retention-basins/ http://www.stormwaterpartners.com/facilities/basin.html

Stormwater Management Design Guidelines

- Rain Garden & Infiltration Basin
 - Grass height between 4-6 inches
 - Peak flow less than 3 cfs
 - side slopes no greater than 3:1
 - subgrade width between 2-6 feet
- Permeable Pavement
 - Lowest point of storage reservoir minimum 3 ft above groundwater table
 - 100 ft from drinking wells
 - 25 ft from structures and septic systems

Concept Development and Selection

- US EPA National Stormwater Calculator/SWMM
- Land and Soil Metrics
- GI Control Ratios
 - Design Parameters
 - Primarily Public Systems
- General site strategies to be implemented where applicable

GIS Data

- QGIS
- Site Selection based on maximizing potential infiltration
- Other Factors
 - Soil and land characteristics
 - Location where recharge is needed
 - Public or private property
 - Aesthetics
 - Functional use of space
 - Potential demonstration site

United Water New York Wells and Groundwater Flow

Stormwater Calculator

🐣 National Stormwater Calculator

Overview Location Soil Type Soil Drainage Topography Precipitation Evaporation Climate Change Land Cover LID Controls Results

- 🗆 🗙

Infiltration Results for Permeable Pavement

Average Annual Runoff (gallons)

Average Annual Infiltration (gallons)

Percentage of Permeable Pavement	Runoff (Gallons)	Infiltration (Gallons)
0%	960,000	250,000
20	770,000	450,000
40%	580,000	660,000
60%	390,000	870,000
80%	200,000	1,070,000
100%	10,000	1,270,000

Conceptual Site

TYPICAL 1 ACRE SITE: 20% LAWN COVER/40% PERMEABLE PAVEMENT

Effectiveness per 10% Increase in Technology

Green Technology	Rise in Percentage of Infiltration	Approximate Water Quantity (Gallons)	
Permeable Pavement	+7.2%	110,000	
Infiltration Basin	+3.0%	33,000	
Rain Garden	+2.4%	41,000	

Impact Visualization

• Typical 1 Acre: 20% Lawn Cover/40% Permeable Pavement generates approximately 660,000 Gallons of Infiltration

Function	<u>Water Usage</u> (Gallons)	<u>Equivalent Uses</u> <u>Per Year (Gallons)</u>
Average Shower	17.2	38,370
Standard Washing Machine Load	27	24,445
Standard Dishwasher Load	11	60,000
Toilet Flush	1.6	412,500
10 Minute Garden Hose Car Wash	100	6,600

Evaluating Solutions

- Point system evaluating technologies and locations
- Created to adapt to client priorities

Point Distribution	Description			
40 Infiltration	US EPA Stormwater Calculator Data and GIS Data, gallons of water infiltrating per year			
30 Cost				
15 Cost of materials	Initial construction of technology			
15 Cost to maintain	Cost per gallon of water infiltrated			
15 Maintenance				
10 Time	Required hours per year of maintenance			
5 Ability to maintain	Willingness/ease of maintenance implementation of location			
5 Loss of purpose	Evaluation of land losing intended purpose			
5 Permitting requirements	Additional permitting will lower score			
5 Combined sewer area	Points awarded to sites infiltrating in areas where runoff flows to combined sewer			
Total= 100 possible points				

Decision Matrix

	Rain Garden	Rain Garden		Infiltration Basin		Permeable Pavement	
	Value	Points Awarded	Value	Points Awarded	Value	Points Awarded	
40 Infiltration							
30 Cost							
15 Cost of materials	-					-	
15 Cost to maintain							
15 Maintenance							
10 Time							
5 Ability to maintain							
5 Loss of purpose							
5 Permitting requirements							
5 Combined sewer area				a la			
T 1 1 4 4 4 4 9 9 9							
Total (out of 100)		0.00		0.00		0.00	

Cost of Materials

Technology	Cost per square foot
Infiltration Basin	\$2.50
Rain Garden	\$4.00
Permeable Pavement	\$4.00

http://www.statecollegepa.us/index.aspx?NID=2480 http://sustainablestormwater.org/2007/05/05/permeable-pavers/ http://water.epa.gov/polwaste/npdes/swbmp/Infiltration-Basin.cfm http://www.lowimpactdevelopment.org/school/articles/rain_garden.pdf http://www.stormwatercenter.net/Assorted%20Fact%

20Sheets/Tool6_Stormwater_Practices/Infiltration%20Practice/Porous%20Pavement.htm

Example

- 1 acre, 20% lawn 80% impervious
- 40% permeable pavement
- 13,939 sq ft x \$4 per sq ft = \$55,756
- 660,000 gallons of water collected in the first year

• Cost = \$0.08 per gallon infiltrated within 1 year

Questions?